
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 651
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

T

Integration of traffic management with service-oriented traffic
classification with Intrusion Detection

Abstract - In a typical network, the traffic through the network is heterogeneous and consists of flows from multiple applications and
utilities.Considering todays threats in network there is yet not a single solution to solve all the issues because the traditional methods of port-
based and payload-based with machine learning algorithm suffers from dynamic ports and encrypted application.Many international network
equipment manufactures like cisco, juniper also working to reduce these issues in the hardware side.Here this paper presents a new approach
considering the idea of service-based.This method is, in some sense, orthogonal to current approaches and it can be used as an efficient
complement to existing methods to reduce computation and memory requirements.Experimental results on real traffic confirm that this
method is extremely effective and may improve considerably the accuracy of traffic classification, while it is suitable to a large number of
applications.Finally, it is also possible to adopt a service database built offline, possibly provided by a third party and modeled after the
signature database of antivirus programs,which in term reduce the work of training procedure and overfitting of parameters in case of
parameteric classifier of supervised traffic classification.

Index Terms— Network operations, traffic classification, security, intrusion detection, service identification, false positive, false negative.

 I. INTRODUCTION

raffic classification is one of the hottest topics in
computer networks. On the one side, network managers

want to know precisely the type of traffic transmitted over
their networks to enforce various polices such as for quality of
service (QoS), security, management, and more. On the other
side, an increasing number of applications tend to hide their
behavior (through encryption, tunneling, etc.) trying to avoid
limitations imposed by such policies. Many international
network equipment manufactures like cisco, juniper also
working to reduce these issues in the hardware side.

Traditionally, traffic classification relies on the port based
method, which exploits transport layer information (source
and destination TCP/UDP ports). However, this method has
many limitations that make it quite imprecise and inefficient
despite its extensive usage. Not all servers respect well-known
ports conventions, malicious software can use well-known
ports in order to let its traffic pass through port-based security
restrictions, many peer-to-peer applications actively try to
avoid classification using random ports, network tunnels can
be instantiated using well known ports in order to avoid
imposed traffic restrictions, IP payload encryption hides the
port numbers.
An evolution of this approach relies on payload-based

inspection that is used in most commercial devices and
is declined in different flavors [4]. This technique shares
some of the problems of port-based classification
(encrypted protocols, tunneling) and is perceived as really

expensive from the computational point of view. Other
classification techniques that aim at identifying applications
based on their behavior as inferred from observed traffic
(statistic traffic analysis or heuristic analysis) are being
studied,but are far from being ready for commercial
deployment.
 This paper presents a new classification technique that, in
some respect, is orthogonal to the above mentioned
 mechanisms.Our approach, called service-base classification,
exploits information about services previously discovered in
the network in order to classify traffic flows. Main

advantages of this method are robustness, accuracy, a limited
use of processing power, reduced memory requirements,

corresponding author-Balaji.S,balajiit@gmail.com

and the capability to use any classifier in the early stage
of the classification (namely, the service identification
phase).

This paper is organized as follows. Section II surveys the
most common classification methods available in the
literature. Section III describes the service-based classification
idea, while some details about our implementation are given
in Section IV. Section V presents an evaluation of this
technique and conclusive remarks are presented in Section VI.

II. RELATED WORK

Currently deployed network classification algorithms
generally fall in one of two categories: payload
based algorithms and behavioral algorithms. This section
provides a brief overview of the state of the art in
network traffic classification focusing on some of the
most relevant algorithms in each category.
Payload-based classification is applied by most commercial
solutions for various purposes ranging from statistics to
security, because it provides the best trade-off between the
classification accuracy and the coverage in terms of number of
recognizable protocols. A possibly deep inspection of data
transported within packets is used to identify the flow packets
belonging to and the application generating it. In fact, by
inspecting the headers of the higher layer protocols, possibly
up to the application layer payload, it is possible to precisely
identify the protocol being used by the application
possibly gather information on the type of traffic it generates.
However, the correct identification of a protocol is not
straightforward. One approach relies on searching for patterns
or regular expressions that can uniquely identify each
protocol; a database containing the description of each
protocol is needed. Many payload based solutions have been
proposed [2] [3], some coupled with an approach for
describing network protocols in order to make classification

Balaji.S ,Vivek.A ,Dr.P.Pandarinath

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 652
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

code easy to reuse and update [5][6]: classification of
additional protocols or new versions of existing protocols can
be achieved by simply adding their description, without the
necessity of any modification to the classification software
itself.

Known problems of payload based classification algorithms
are (i) high sensitivity to packet loss and TCP/IP
fragmentation and segmentation issues, (ii) hard and time-
consuming task of creating protocol signatures, that are
crucial to the effectiveness of the solution, (iii) encryption
and/or tunneling that hinders access to data contained into
application layer headers and payloads, and (iv) significant
requirements in terms of computational and memory resources
that actually make traffic classification at high line rates
difficult. Due to the high computational requirements of deep
packet inspection, payload based classification algorithms
usually limit pattern searching to the initial packets of
each flow. According to this method, named Packet Based –
Flow State in [4], once the protocol transported by a flow
has been recognized, the flow identifier (i.e., the 5-tuple
including IP addresses, ports, and transport layer
protocol) and the corresponding application-layer protocol
are added to a data structure in memory, often called
session table, that is maintained as long as the flow is
active1. The main critic moved toward these methods is
about the memory usage for maintaining flow state
information; in case of large networks, the size of such per-
flow state grows significantly and this might become an
issue. Furthermore, additional memory is required because
pattern matching usually relies on regular expressions,
which are well-known for their memory consumption
due to the necessity of maintaining graph-based structures
representing Deterministic Finite Automata. On the other side,
also processing requirements may be problematic due to
regular expression matching and to session table
management (lookup, insertion, deletion, etc.). These
problems become even worse in the Message Based –
Protocol State flavor [4] of the payload-based method
(implemented in Binpac [6] and SML [7]), that needs to
rebuild the entire application-layer message to enable the
analysis of the entire data in order to achieve the precision
required for security appliances. In this case, the amount of
information to be maintained grows even more, as do
processing requirements for session reconstruction and
application-layer processing, although some smart method can
be devised in order to decrease this complexity [18]. It is
important to notice that [4] demonstrates that the simpler
Packet Based – Flow State approach is in most practical cases
sufficient for the vast majority of applications.

Another approach in traffic classification relies on
behavioral techniques, whose main assumption is that each
application is characterized by some specific behavior.
Applications can then be identified by just gathering
information at different levels (e.g., packet inter-arrival time,
jitter, packet size, etc.) and analyzing it (e.g., from a statistical
point of view), often without inspecting protocol headers and
application data transported. Therefore behavioral algorithms
are not affected by any of the shortcomings of payload based
algorithms related to information hiding (e.g., by encryption)
or camouflage (e.g., by using ports typically deployed by

specific services). Specifically, behavioral algorithms work
the same way independently of whether flows use encrypted
payloads or not. Unfortunately, behavioral algorithms have
some common limitations; first of all, most of them typically
require a pre-classified traffic trace in order to train the
classifier before it can start working. These pre-classified
traces are usually classified using payload-based methods,
manual inspections and human experience; although there are
few guaranties about the actual precision of these pre-
classified traces, all measurements are done starting from an
imprecise base. Furthermore, a wide class of behavioral
methods needs to be trained in exactly the same conditions of
the environment where they are going to be deployed, which
often prevents the training sets obtained in one site from being
usable as a trainer set in other places. Additional problems are
related to the limited temporal validity of the training set due
to network reconfiguration and long term variations, and to
the fact that these algorithms often need to observe a fairly
large number of packets before they can work properly.
 Behavioral algorithms can be further organized into
three sub-categories. Machine learning algorithms [9] [10]
[11] [12] [13] deploy advanced analysis techniques,
such as clustering algorithms, to divide network flows in
different classes based on information devised without
inspecting application layer payload. Statistical algorithms
[14] process statistical properties of network flows through
mathematical function, like Bayesian filters, in order to
derive a statistical “fingerprint” for each application.
Typical data analyzed by these algorithms are round-trip-
time, inter-arrival time, inter- arrival jitter, mean packet size.
Heuristic algorithms evaluate how each host act within the
network in order to identify the applications that hosts are
running. Some examples of data analyzed by these
algorthims are the order of requests/responses produced by
a host, number of hosts contacted, number of ports
deployed.

III. SERVICE-BASED CLASSIFICATION

 Service-based classification is a surprisingly simple idea
that relies on the observation of how hosts usually interact and
on the assumption that certain hosts, usually called servers,
perform similar interactions, usually offering a service, with
multiple other hosts over a certain time span. This assumption,
which provides the foundation of our method, will be verified
through experiments on real network data in Section V.B.

According to the classic client-server paradigm, a
potentially large number of hosts connect to a single one to
obtain a service. In this situation it is easy to identify the
server as a main actor with a long lasting role as it usually
offers the same service at the same “network coordinates” (IP
address and TCP/UDP port) for a long time. The basic
assumption in service-based classification is that knowing
 which service is offered at an IP address/port pair, a classifier
can infer that all sessions directed toward that pair will access
such service. For example, if the classifier knows that host
www.polito.it is running a web server on TCP port 80, it
can classify all sessions established to this IP address/port pair as
HTTP traffic. It is important to notice that such a classifier does
not work like a port based classifier. While the latter
assumes that a session is transporting HTTP because it is

IJSER

http://www.ijser.org/
http://www.polito.it/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 653
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

connected to TCP port 80, a service-based classifier knows
that www.polito.it is running a web server on TCP port

80. When the classifier discovers a service, it stores the triple
identifying it — i.e., IP address (of the server), TCP/UDP port
(at the server), and transport protocol in an appropriate
structure in memory called Service Table.
 The same principle can be applied to hosts running peer-to-
peer applications. In this case the application has a client part
and a server part running simultaneously: the client part of a
peer establishes sessions to the server part of other peers
awaiting for connections at a specific port. How this port is
assigned and communicated to the other peers depends on the
specific application and protocol, but the key point is that the
port used to receive connections from other peers usually does
not vary very frequently and is reused many times for the
same instance of the peer-to-peer application. So when the
client part of a peer connects to the server part of another peer
to transfer information, the service-based classifier identifies
the server part of such session as a service and stores the
associated triple in the service table. Also peer-to-peer
applications that use the same port for both the server part and
the client part, such as Skype for example, are handled
properly. After a peer A has received a connection to its server
part, a triple containing its IP address and port is created in the
service table as a service. When its client part connects to
another peer B, the service-based classifier classifies the
corresponding packets according to either A’s service entry or
B’s service entry. Although classification based on A’s
service entry is in principle mistaken as packets are being
exchanged as part of a session whose server side is B, the
packets are anyway correctly classified as belonging to the
peer-to-peer application at hand. When an application shows
such behavior (which is not uncommon among P2P software)
our approach can be extended by adding also the client-side of
a session to the service table, which will become the server
part in a later data exchange, for all traffic belonging to that
application.
It is important to notice that finding out which service is
running at a certain IP address/port pair (i.e., service
identification) is orthogonal to the service-based approach: in
principle, any method can be used to perform service
identification (payload-based, heuristic, or even manual
inspection, and more). The service-based approach assumes to
know precisely the service associated to an IP address-port
couple and from that point on it will guarantee a precise
identification of that traffic. Obviously, service identification
is not straightforward and its effectiveness has an impact on
the outcome of service based classification, as discussed later.
Service-based classification features interesting advantages

over other classification methods. Encrypted traffic
at application layer can be properly classified provided that
the corresponding service has been previously identified,
i.e., it has an entry in the service table. It offers pattern
segmentation transparency, i.e., a flow can be properly
classified even though protocol identifying patterns are split
across multiple packets, avoiding the complexity of
reassembling application data units. A service-based
classifier needs to maintain only information about services
(i.e., IP address, port, transport protocol and service
offered) independently of the number of traffic flows

actually using such services; hence it has limited memory
 requirements. The limited amount of state
information kept by a service-based classifier impacts (i)
scalability, performance in terms of (ii) lookup time and (iii)
hardware implementations that can rely on faster on-chip
memory. Classification of a packet belonging to a known
service requires a single lookup on three fields (IP
address, port and transport protocol) in a relatively small
lookup table, therefore with low computational cost.
Moreover, service identification, which might have higher
computational cost, is expected to be performed only on a
small fraction of the packets and it can be even
performed offline; in any case, service identification is
orthogonal to the service-based method. Finally, as we
said, service-based classification is among the few methods
that guarantees early classification, i.e. being able to
classify even the first packet (e.g., a TCP SYN) within
each session, while other methods need to process at
least the first few packets within each session.
Service-based classification also has some potentially

critical issues. Its effectiveness, in terms of minimizing both
misses and wrong matches, and also its performance heavily
depends on identification of network services that must be as
accurate as possible. A wrong entry in the service table leads
to wrongly classifying a potentially large number of
flows, while a missing entry possibly leads to both a
failing classification of a large number of flows and
deploying significant amount of computational resources in
an effort to identify the service being used, e.g., by deeply
inspecting the corresponding packets. Consequently, a
successful service- based classification is tightly coupled to a
robust and effective service identification solution,
which,as we said, is orthogonal to service-based classification.
In addition, not keeping information about individual

sessions, service-based classification is not suitable
for applications that require such granularity level, such as,
for example, per-session enforcement of QoS policies. A
service- based classifier can be customized for such
applications to keep an additional session table for those
services requiring so, which is a simple extension that can
be added to any implementation.

IV. IMPLEMENTING A SERVICE-BASED CLASSIFIER
Although the service-based classifier looks simple and
elegant, some issues need to be addressed to make it working
properly. This section presents such issues and gives some
insight in how they have been addressed in our
implementation. Given the generality of the service-based
method, other implementation strategies can be adopted.

 A. Service identification
 Given the expertise and previous work of the authors, a
payload-based implementation of a service identification
module has been an obvious choice. In particular, an existing
packet processing engine based on the Network Packet
Description Language (NetPDL) [1] [5] has been reused in the
implementation of the service identification module. NetPDL
is an application-independent packet format description
language that enables the creation of a generic protocol
description database: the NetPDL database, in fact. Although

IJSER

http://www.ijser.org/
http://www.polito.it/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 654
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

it includes only packet header formats and does not support
the description of protocol temporal behavior (e.g., a protocol
state machine), it has proved being extremely effective and
robust with respect to traffic classification [4], thanks to an
extension that enables management of lookup tables,
originally used to maintain transport-level sessions [5]. The
high flexibility of NetPDL makes the engine suitable for the
implementation of the service-based classifier as well, in
addition to the payload-based service identification module.

The main modification made to the NetPDL engine is the
addition of some new tables, such as the service table that
contains information about services. The process starts with
an empty service table, while traffic is processed by extracting
IP addresses and ports from each arriving packet. Since the
server side of the communication cannot be inferred on
a packet-basis, the service table is looked up twice: once
with the source identification (source IP/port) and once
with the destination identification. If one of these
lookups is successful, the packet is classified through the
service-based method. Otherwise, as depicted in Figure
1, the service identification module performs a payload-
based classification to possibly introduce a new entry
in the service table containing the IP address and the
transport layer port used by the server side of the session
and the application protocol associated. Any new packet
toward this “known service” can subsequently be classified
directly through the information kept in the service table
as described above without any further processing (e.g.,
payload inspection). Please note that the identification of
the server side of the connection is not straightforward and
will be discussed in Section IV.B. As time passes, more and
more traffic will be classified by the service- based method
since the service table will include an increasing number,
possibly most, of the services active in the network.

 B. Distinguishing clients and servers
 The server side of a TCP session can be easily identified by
observing the SYN and ACK flags during in the three-way
handshake of the TCP protocol. In our implementation we use
an additional lookup table, called Candidate Service Table, in
which a new entry is added with the IP address and port of a
host that accepted an unclassified TCP session by generating a
TCP packet with both the SYN and ACK flag enabled. The
Candidate Service Table is required to keep track of the server
side of a session because the service is possibly identified,
e.g., through payload inspection, once the session has been
opened, i.e., when the SYN/ACK flags, used only during the
initial handshake phase, are not available to enable the
identification of the server side. When the service is finally
identified, the server information is moved from the candidate
service table the service table.

Entries of the Candidate Service Table are subject to a very
fast ageing (about ten seconds [19]) in order to avoid their
number to explode over time due to sessions opened by
unidentified services, unsuccessful handshakes, or unused
opened sessions, as in cases of malicious activity such as SYN
flooding and port scanning.
With UDP services identifying the server is different
Since explicit information like the SYN flag in the TCP case is
not available. Although, especially with the growing adoption
of broadband multimedia applications, UDP is expected to
significantly increase its traffic share, possibly becoming
predominant, this paper focuses on TCP traffic, which as of

today accounts for the vast majority of data. UDP traffic
classification, that requires a non-straightforward extension of
what is proposed in this work, is left to a companion future
paper.

C. Managing the service table
Besides properly populating the service table, an important
issue is the prompt elimination of service entries once the
corresponding service is no longer provided. This is important
in order to avoid the explosion of the number of service
entries and that a service offered only temporarily leads to
classification errors. One possible approach is to purge an
entry that does not make a hit for a certain amount of time,
hereafter referred to as service inactivity timeout. As a further
refinement, the service inactivity timeout can be differentiated
for different service classes. For example, some services are
offered over a long time period, possibly permanently, even
with a low connection rate, and their entries are given a long
service inactivity timeout. A typical example of this service
class is an SMTP server contacted only few times in a day,
but providing its service over a very long time period. Vice
versa, other services have a naturally short life and the
inactivity timeout associated to their entry may be shorter.
Typical examples are peer-to-peer applications.

Assigning distinct service inactivity timeouts to different
classes of services, although not strictly necessary, is useful in
avoiding multiple re-identification of long-term services, e.g.,
through costly deep packet inspection. On the other hand,
assigning an entry to the long-term service category is critical
because if the service is not actually long-term or it has been
wrongly identified, the entry can lead to persisting
classification errors. Consequently, there should be a certain
level of certainty about service before categorizing it as a
long-term one. One possible policy is to set any newly
identified service “under observation”: its entry is categorized
as short-term and some additional checks are performed on
packets classified according to the entry. For example,
payload inspection can be executed on randomly chosen new
sessions. After a certain period of observation confirming the
initial identification, hence the long-term nature of the service,
the corresponding entry can be categorized as long-term.
Another policy can be to categorize services as long-term only
through explicit (e.g., manual) configuration.

With respect to the scalability of service based
classification, it is worth noticing that the management of the
service table is independent of the classification process and
can be implemented as a distinct process running separately
from the core classification process.

V. EXPERIMENTAL EVALUATION

This Section provides an experimental evaluation of
service-based classification, including some problems
that arise in its implementation. The next section first
devises the benefits expected by the deployment of
service-based classification from an analysis of network
traffic itself — i.e., not based on the results of
particular classification experiments — which provides a
more general assessment of the potential of service based
classification. Then, the results of specific classification
experiments are reported to substantiate such general
assessment.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 655
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A. General Assessment
Before implementing our service-based classifier we

collected a set of session-related statistics on the link
that connects our University to the Internet to assess the
potential benefits of service-based classification in terms
of memory occupancy, i.e., if the number of services was
really smaller than the number of sessions. These
measurements, done using Tstat [15] and lasting several
days, wanted to determine the maximum number of service
entries required to classify all the traffic with a service-based
approach, compared to the number of session entries
required by a classifier based on session identification.
The obtained results must be intended as a lower bound
of the session/service table size since they account for
the session/services present and actually active at any given
time. A TCP session is considered closed when a FIN or
RST packet is observed; in case of abnormal
termination, a 10-minutes session inactivity timeout is used
to declare a session terminated, as suggested in [22] and
0. Analogously, services are considered closed if no
traffic is observed in an idle period of the same duration.
Figure 2 shows, for each minute, the number of active

traffic sessions and the corresponding number of services on
the uplink (100 Mbps) of our university network (about 6,000
hosts) over a 7-day period. The average number of active
traffic sessions is 80,000 with peaks of 180,000, while the
total number of services never exceeds 10,000. Figure 3
shows the same figures for a traffic trace2 from the MAWI
wide traffic archive [21]. The average number of active
session is 120,000 with a peak of 380,000, while the total
number of services never exceeds 10,000. The average on the
whole observation period of the session to service ratio is
about 20 for both traces, which means that a service table
requires roughly 20 times fewer entries than a session table.
Furthermore, a service entry is smaller than a session entry,
thanks to the smaller number of information that has to be
stored. This is beneficial in terms of memory requirements as
well as both processing requirements and performance for
session/service information look-up.

Observed sessions 40503
Observed services 21675
Observed applications 81
Services in which sessions are classified

univocally as belonging to the same
21042

The tool has been installed on 11 hosts (with Linux,

Windows and MacOS-X operating systems, running
several applications; among the other Skype, Emule, Joost,
uTorrent), the traffic produced has been captured for 4
days and the traffic traces have been analyzed by a payload-
based classifier.

Comparision

An important observation is that simply increasing the
service inactivity timeout may not be a good idea, since we
may end up filling the service table with entries related to one-
shot services or services that are anyway not any longer
active, which will never appear again in the future. This is
evident in Figure 7 that shows an almost four-fold increase of
the service table size when changing the service inactivity
timeout from 10 to 60 minutes— without any appreciable
advantage in terms of classified traffic, as shown by Figure 6.
Therefore, a 10 minute service inactivity timeout has been
used in the experiments producing all the results presented in
this discussion.

B. Accuracy
Our tests show that service-based classification offers an

improvement in classification accuracy over results obtained
with the original payload-based classifier. For example, trace
Weekend contains a significant amount of traffic generated by
eDonkey that hinders payload-based classification when
application-layer data is encrypted. The payload-based
classifier recognized only a small percentage of the flows
generated by these applications, e.g., some sessions that are
occasionally sent in clear and that represent special cases. For
example, Skype sometimes produces packets that are only
partially encrypted and consequently can be properly
inspected and classified; similarly, not all eDonkey messages
are encrypted. In all the other cases, the payload-based
classifier is unable to identify the protocol transported and it
marks flows as unknown, as it is shown by the high
percentage of unknown traffic in Figure 9. Experimental
evaluation also showed another problem related to the
completeness of the pattern database used by the payload-
based method. In fact, some unknown traffic is related to
flows that use particularly rare or undocumented application
level messages that are not part of the pattern database of the
payload-based classifier. Service-based classification does not
have this problem, because once a service has been identified
thanks to the presence of some known signatures in
application-level messages, following sessions are classified
based on the network coordinates they are related to. This is
confirmed by Figure 9 where the service-based classification
leaves a much smaller amount of traffic as unknown, while
classifies as eDonkey a much larger percentage of traffic than
payload-based classification. Results reported in Figure 9 are
referred to the percentage of packet classified; results are
slightly worse in terms of bytes, in which the percentage of
the unknown traffic is 11%.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 656
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Comparision of both service and payload-based classification

Payload based classification on trace WorkingDay results in

a low percentage of unknown traffic because the trace
includes mainly HTTP traffic. However, service-based
classification results in improved accuracy also on the
WorkingDay trace. Figure 10 focuses only on the unclassified
traffic of Figure 9 and shows how this traffic has been
classified by the service-based classifier. For instance, among
the 54% of unclassified traffic of the Weekend trace, about
18% was eDonkey, 14% RPC (which is included in the
“others” bin in Figure 9), and more. Manual investigations on
a randomly chosen subset of classified flows confirm that the
outcome of the service-based classifier is correct.

C. Scalability
Scalability must be assessed in terms of memory and

processing requirements.
From the processing side, the computational complexity of

a classification solution is an important index of its scalability.
Profiling done on our classification code (written in C/C++)
confirmed that the cost for a lookup in the service table (i.e.
the main cost associated to each packet by the service-based
method) is 37 times lower than the cost for a pattern matching
on the payload (9700 clock ticks against 2607). Although the
asymptotic processing cost remains the same in both service-
based and payload-based classifier (in the unfortunate case in
which each service is associated to a single session), in
practical terms our method guarantees a speed-up of more
than an order of magnitude at best.
In summary, the performance and scalability improvements
of service-based classification over payload-based
classification is directly proportional to the percentage of
traffic classified by the service table, i.e., without
performing payload inspection.

 Classification of traffic
 VI. CONCLUSIONS

 This paper presents a new idea for traffic
classification, named service-based classification, that is, in
some respect, orthogonal to the other classification techniques.
This method introduces also in the traffic classification arena
the concept of fast path, through which the vast majority of
the traffic is processed with a limited use of processing
and memory resources —ultimately in a short time— and a
slow path that is invoked in a limited number of cases. In
this respect, service-based classification aims at providing a
solution to the fast-path processing by proposing that traffic
be classified according to the service it belongs to. A service
is identified by a serviceID, which is the tuple {server
IP address, transport-level port, protocol}. Experimental
data confirm that services are very stable even over long
periods, making this method extremely simple,efficient and
robust. Particularly, robustness is achieved because this
method does not require the analysis of all sessions: provided
that a service has been previously recognized, sessions
accessing it can be classified even if encrypted at application-
layer or data flow is observed only in one direction. Results in
terms of efficiency are impressive, leading to a 37x reduction
in processing cost, and a 20x reduction in the number of
entries in data structures compared to session based
classifiers at least in the traffic trace examined; furthermore
each entry being half the size. Real-time measurements on
the actual traffic transmitted on the upstream link of our
University show that roughly 81% of the packets and 93% of
the traffic (in terms of bytes) is successfully classified with
the proposed method. Furthermore,service based classification
is among the few methods that guarantee early
classification, including the initial TCP handshake of a
session. Among the few drawbacks of this method is the
impossibility to classify IPsec traffic. It is worthy noticing that
the precision of the service identification process is crucial for
obtaining high-quality results, since a mismatch in service
identification will impair the classification of all the sessions
related to that service

 REFERENCES
[1] Computer Networks Group (NetGroup) at Politecnico di Torino. The

NetBee Library. August 2004. [online] Available at
http://www.nbee.org/.

[2] S. Sen, O. Spatscheck, D. Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. Proceedings of
World Wide Web Conference, pp. 512-521 NY, USA, May 2004.

IJSER

http://www.ijser.org/
http://www.nbee.org/
http://www.nbee.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 657
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[3] P. Haffner, S. Sen, O. Spatscheck, D. Wang, D. 2005. ACAS: automated
construction of application signatures. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Mining Network Data, pp. 197-202,
Philadelphia, USA, August 2005.

[4] F. Risso, A. Baldini, M. Baldi, P. Monclus, O. Morandi. Lightweight,
Session-Based Traffic Classification. Proceedings of the IEEE
International Conference on Communications (ICC 2008) - Advances in
Networks & Internet Symposium, Beijing, China, May 2008.

[5] F. Risso, A. Baldini, F. Bonomi. Extending the NetPDL Language to
Support Traffic Classification. In Proceedings of IEEE Globecom 2007,
Washington, D.C, USA, November 2007.

[6] R. Pang, V. Paxson, R. Sommer, L. Peterson. Binpac: a yacc for writing
application protocol parsers. In Proceedings of the 6th ACM SIGCOMM
on Internet Measurement, pages 289-300, Rio de Janeiro, Brazil,
October 2006.

[7] O. Reviv. Inside network programming with SML. EE Times, August.
 [8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel

Traffic Classification in the Dark. In Proceedings of ACM SIGCOMM,
pages 229–240, Philadelphia, PA, August, 2005.

[9] A. Este, F. Gringoli, L. Salgarelli, Machine Learning techniques
fotraffic classification: an approach based on Support Vector Machines.
Technical Report, November 2007.

[10] J. Erman, A. Mahanti, M. Arlitt. Traffic Classification using Clustering
Algoritms. Proceedings ACM SIGCOMM Workshop on Mining Network Data
(MineNet 06), Pisa, Italy, September 2006.

 [11] J. Erman, A. Mahanti, M. Arlitt, C. Williamson. Identifying
and Discriminating Between Web and Peer-to-Peer traffic in the
Network Core. Proceedings of the 16th International World Wide Web
Conference (WWW), pp. 883-892, Banff, Canada, May 2007.

 [12] N. Williams, S. Zander, G. Armitage, Evaluating Machine Learning
Algorithms for Automated Network Application Identification. CAIDA
Technical Report 060410B, April 2006.

 [13] T.T.T. Nguyen, G. Armitage. A Survey of Techniques for Internet
Traffic Classification using Machine Learning. To appear in IEEE
Communications Surveys & Tutorials, (4th edition 2008).

 [14] M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli. Traffic Classification
through Simple Statistical Fingerprinting. ACM SIGCOMM Computer
Communication Review, Vol. 37, No. 1, pp. 5-16, Jan. 2007.

 [15] M. Mellia, A. Carpani, R. Lo Cigno. TStat: TCP STatistic and Analisys
Tool. Proceedings of the 2nd International Workshop on Quality of
Service in Multiservice IP Networks (QoSIP2003) - LNCS2601, Milano,
Italy, February 2003.

 [16] A. W. Moore, K. Papagiannaki. Toward the Accurate Identification
of Network Applications. International Workshop on Passive and
Active Network Measurement (PAM 2005), Boston MA , USA, vol.
3431, pp.
41-54, March 2005

 [17] T. Karagiannis, A. Broido, M. Faloutsos, Kc claffy.Transport layer
identification of P2P traffic. Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement table of contents, pp. 121 - 134,
Taormina, Italy, Oct. 2004.

[18] G. Varghese, J.A. Fingerhut, F. Bonomi. Detecting Evasion Attacks
at high Speeds without Reassembly. Proceedings of ACM SIGCOMM

2006, Pisa, Italy, September 2006.
 [19] H. Kim, J.-H. Kim, I. Kang, S. Bahk. Preventing Session

Table Explosion in Packet Inspection Computers. IEEE Transactions
on Computers, vol. 54, no. 2, pp. 238-240, February 2005.

 [20] C. Estan, G. Varghese. New Directions in Traffic Measurement and
Accounting: Focusing on the Elephants, Ignoring the Mice. ACM
Transactions on Computer Systems, vol. 12, issue 3, pp. 270-313, Aug.
2003.

 [21] Measurement and Analysis on the WIDE Internet Working group traffic
archive, http://tracer.csl.sony.co.jp/mawi/

 [22] N. Brownlee. Traffic flow measurement: Meter MIB. Request
for Comments RFC 2064, Internet Engineering Task Force, January
1997. Cooperative Association for Internet Data Analysis, Network
Traffic Measurament Tool
http://www.caida.org/tools/measurement/netramet/

IJSER

http://www.ijser.org/
http://tracer.csl.sony.co.jp/mawi/
http://www.caida.org/tools/measurement/netramet/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 658
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

